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● Challenge: 
○ High-Precision Regulation for the Booster Gradient Magnet Power Supply

● Machine Learning Approach:
○ Data selection & Harvesting Infrastructure
○ Digital Twin: generative LSTM
○ Twin as Environment:  Reinforcement Learning for a simple MLP
○ Deployment

■ hls4ml & FPGA bit-precision tests
■ Resource sharing & latency
■ Future steps

● Status

References herein as drawn from pre-print.
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https://arxiv.org/abs/2011.07371
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GMPS: Gradient Magnet Power Supply in Booster
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Main bending & focusing magnets of Booster (smallest ring), which boosts
0.4 GeV H- from Linac ⇒ 8 GeV H+ for a wide array of High Energy Physics

Negative hydrogen ions begin at the checkered 
flag and flow through the complex in pulses.
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GMPS: Gradient Magnet Power Supply
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Inject at ~400 MeV/c from Linac

Bending magnets                need ~102 A to keep 
400 MeV beam on orbit

H- electrons stripped by passing through foil 
upon injection               making them H+
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GMPS: Gradient Magnet Power Supply
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        RF (Radio frequency) accelerator cavities
capture beam and accelerate beam from 

0.4 GeV/c → 8.0 GeV/c
following bending magnets in synchrony. 

RF control is outside the scope of this project.
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GMPS: Gradient Magnet Power Supply
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Extract beam at maximum energy.
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GMPS: Gradient Magnet Power Supply
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Ramp back down to prepare for the next 
injection.

Complete cycle executes at 15 Hz
Resonant RLC circuit ⇒ Nonlinear response
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Next cycle begins at
t = 1/15 s
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Perturbing influences: 
- Recent corrections made
- Other nearby synchrotrons
- Fluctuation of 60 Hz power
- Temperatures, etc

Available data mostly with the  
current PID regulator
Spread in B-field degrades beam 
quality, degrades repeatability, & 
contributes to losses

Bending 
Magnet 
Current

Time

GMPS AI: The Need for Improving Regulation

Observed 𝛅I/I for min and max currents: ~10-3 each
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GMPS AI: Existing PID Circuit Regulation

GMPS PLC 
sends control 
signals to 4 
bending magnet 
power supplies
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GMPS AI: Existing PID Circuit Regulation

Reference magnet with 
B-field transductor

→ Zero-crossing time
→ Minimum field
→ Maximum field
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GMPS AI: Existing PID Circuit Regulation

Human experts adjust target 
settings from time to time via 
control system

Also records settings & 
readings with some 
unknown latency 

Known factors excluded 
from PID control logic:
Line Voltage variation, 
Gallery temperatures, etc.
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B_VIMIN = Setting to achieve
B:VIMIN = Prescribed remedy from 
PID regulator circuit
B:IMINER = 10*(Setting - obsMax)

B_VIMAX = Setting to achieve
B:VIMAX = Prescribed remedy from 
PID regulator circuit
B:IMAXER = 10*(Setting - obsMax)

Bending 
Magnet 
Current

Time

GMPS AI: Available time series data

Injection

Extraction

Independent regulation problems
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B_VIMIN = Setting to achieve
B:VIMIN = Prescribed remedy from 
PID regulator circuit
B:IMINER = 10*(Setting - obsMax)

We chose to focus on injection
- Simplifies development
- Can generalize once 

performing well
- Greatest potential for positive 

impact on science program

Bending 
Magnet 
Current

Time

GMPS AI: Available time series data

Injection

Extraction
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B:LINFRQ = 60 Hz line frequency error [mHz]
I:IB = MI lower bend current [A]
I:MDAT40 = MDAT measured MI current [A]

GMPS AI: Selected time series data & dataset cleaning

B_VIMIN = Setting to achieve*
B:VIMIN = Prescribed remedy from 
PID regulator circuit
B:IMINER = 10*(Setting - obsMax)

Initial selection by Subject Matter Experts: 54 time series (out of 200k+ devices)
For small time window with constant settings, further narrowed to these five.
→ Biggest perturbation from MI current I:MDAT40
(Confirmed by Granger causality study vs “loss” B:IMINER)

Post-processed data: At every cycle, take most recent value for each device.
(Handles asynchronous timestamps.)
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GMPS AI: Generative Multivariate LSTM as Digital Twin

Trained an LSTM to accurately predict next time step.

 
In “Ouroboros” configuration, this reproduces the learned 
multivariate dynamics, providing an offline environment to 
train a control agent through Reinforcement Learning.

Long Short-Term Memory:
A family of Recurrent 
Neural Network 
architectures featuring an 
hidden state, giving ability 
to learn long-timescale 
behaviors from data

B:IMINER 
B:LINFRQ
B:VIMIN
I:IB  
I:MDAT40

B:IMINER 
B:LINFRQ
B:VIMIN

Last 150 
timesteps

Next 
Timestep

Agent adjusts B:VIMIN
(I:IB & I:MDAT40 continue to draw from data)

Guillaume Chevalier - Own work, CC BY 4.0, 
https-//commons.wikimedia.org/w/index.php?c
urid=71836793.png
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GMPS AI: Generative Multivariate LSTM as Digital Twin

Results reflect behavior in data remarkably well.

B:IMINER = 10*(Setting - obsMax)B:VIMIN = Prescribed remedy from 
PID regulator circuit
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GMPS AI: Digital Twin as RL Environment

With LSTM providing environment, trained an MLP agent 
to tweak B:VIMIN prescription each timestep

- Reward function: neg. abs. error = -|B:IMINER|
- Q-learning @ 50 timestep episodes

- Double DQN (target & policy model distinct)
- 32-experience (random) to update policy model
- ϵ-greedy decay factor 0.9995 (min: 0:0025)
- Discretized options to change B:VIMIN:

0 (no change), ±0.0001, ±0.005, and ±0.001.
- 3 layers of 56 ReLU nodes
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GMPS AI: Digital Twin as RL Environment

With LSTM providing environment, trained an MLP agent 
to tweak B:VIMIN prescription each timestep

- Reward function: neg. abs. error = -|B:IMINER|
- Q-learning @ 50 timestep episodes

- Double DQN (target & policy model distinct)
- 32-experience (random) to update policy model
- ϵ-greedy decay factor 0.9995 (min: 0:0025)
- Discretized options to change B:VIMIN:

0 (no change), ±0.0001, ±0.005, and ±0.001.
- 3 layers of 56 ReLU nodes

~x2 better 
than PID
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GMPS AI: Deployment on FPGA: Bit precision

7119 trained floats: How few bits can we use? (Multiply-and-Accumulate)
on 1518 available DSP slices 

● 99% of weights are >2-9
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GMPS AI: Deployment on FPGA: Bit precision

7119 trained floats: How few bits can we use?

● 99% of weights are >2-9

● >99.5% of actions are the same when 
using 14 bits to encode non-integer 
part of the weights

⇒ 1 (sign) + 5 (int) + 14 (fract.) = 20 bits

(Multiply-and-Accumulate)
on 1518 available DSP slices 
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GMPS AI: Deployment on FPGA: Resources & Latency

Making it real: Keras model → Intel Arria 10 
hls4ml to convert Keras models to High-Level Synthesis for FPGAs
DSP: Digital Signal Processor 

(carries out MACs)
BRAM: Block RAM
MLAB: Memory Logic Array Block
ALM: Adaptive Logic Module 

(simple arithmetic & logic operations)
Register: temporary value storage sites 

Reuse factor per layer = GCD of global reuse factor w.r.t. (inputs * outputs)

Tradeoff: Speed vs. Resource Usage Efficiency
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GMPS AI: Status

● FPGA on dev board, talking to a server with GPU
○ First model loaded, replicates expected responses (Brian Schupbach)
○ Logging capabilities being added for dev board

■ Goal: Address data logger timestamp quality issue for AI@AD
● Found our online learning approach: Twin Delayed DDPG (T3D)

○ Control policy (neural net) running on chip, while an upgrade candidate is 
being developed.  Gradual changeover.

○ Implies small change of neural net architecture (discrete continuous), but 
retraining from scratch is fine

● Preparing for first real-time running 
○ without settings (only log recommended actions)
○ then with settings.  Expect engineering review.
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GMPS AI: Future Steps

● Computing infrastructure for automated, continuous learning
○ Logging model parameters, performance, etc. also automatically, with 

hooks for human oversight
● Expanding dataset ~x1000 for LSTM

○ (Now the computing gets serious! ExaLearn.)
● Room for more sophisticated control agents. (So far <6% resource usage.)

○ Bigger MLP (offset with higher reuse factor?) 
○ Parallel Ensembles voting
○ Data-driven model with Uncertainty Quantification (Environment & Agent)
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Details about this project

Proof-of-concept pre-print paper aimed at Accelerator Physicists: 
[2011.07371] Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster 

Dataset used for these results, with ethical & technical Data Sheet:
BOOSTR: A Dataset for Accelerator Reinforcement Learning Control 

Coming soon: 
~x100 dataset on zenodo.org and in review with  Nature: Scientific Data
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Thank you!
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GMPS AI: PID control logic

B_VIMIN = Setting to achieve
B:VIMIN = Prescribed remedy from 
PID regulator circuit
B:IMINER = 10*(Setting - obsMax)

Based on history of current minimum error
B:IMINERt = 10*(fitted_mint - B_VIMINt)

generate cumulative time series (with ૪=7.535008e-5)
Beta: βt= βt-1+ ૪B:IMINERt 

Now prescribe (with α=8.5e-2)
B:VIMINt+1 = B_VIMINt - α B:IMINERt - βt 
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